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Abstract--In this paper a computer model of pressure-shadow growth is presented based on a principle of 
geometrical best fit between a rigid object and a deformable matrix. By varying the parameters in the simulation, 
pressure shadows of different shapes can be generated and matched by trial-and-error with specific natural 
examples. Thus the method is able to give estimates of crystallization laws, finite strain and deformation path. 
Simulations carried out for a number of natural examples show that: (1) the pressure-shadow infilling material 
can be rigid or deformable and the direction of growth appears to be mostly 'displacement controlled'; (2) the 
finite strain is larger than what appears from the shape of the pressure shadow; and (3) the deformation path 
may be 'replayed' by the simulation. From the results of the simulations we emphasize the morphological 
characteristics of pressure-shadows which can be reliably used for shear-sense determination. 

INTRODUCTION PRESSURE SHADOW CHARACTERISTICS 

FINITE-STRAIN analyses and kinematic reconstructions 
are of great value in the study of crustal deformation. 
During the last few decades, various methods for analyz- 
ing finite strain (recently reviewed by Ramsay & Huber 
1983) and the sense and amount of rigid rotation 
(Simpson & Schmid 1983, Nicolas 1984) have been 
developed. None of these methods allows measurement 
of both finite strain and rotation. Furthermore, some 
methods of shear-sense determination appear to be 
conflicting and are still controversial. 

We present a numerical method for simulating the 
development of pressure shadows. The results allow us 
to estimate the amount of deformation and rotation in 
natural examples. We use pressure shadows because 
they are common in metamorphic rocks, because they 
accurately record incremental strains, and because their 
geometry and their growth processes are well 
documented (Miigge 1928, 1930, Pabst 1931, Demay 
1942, Fairbairn 1950, Frankel 1957, Langheinrich 1964, 
Zwart & Oele 1966, Ramsay 1967, Spry 1969, Chouk- 
roune 1971, Elliott 1972, Durney & Ramsay 1973, 
Subieta 1977, White & Wilson 1978, Malavieille et al. 
1982, Malavieille & Etchecopar 1984). We have chosen 
a geometrical model for two reasons. 

(1) The deformation path can be inferred only from 
the shape and the internal geometry of pressure 
shadows. 

(2) The treatment of many samples is possible because 
the quality of the geometrical fit between actual and 
computed pressure shadows can be easily and quickly 
assessed by eye. 

After a short review of the subject, we will explain the 
principles of our simulation, and then apply it to some 
actual examples from several well-known tectonic con- 
texts. 

A recent and complete review by Ramsay & Huber 
(1983) considers two main types of pressure shadows: 
pyrite type and crinoid type. In the crinoid type, progres- 
sive fibre growth occurs from the object surface towards 
the displaced matrix, with crystallographic continuity 
between fibres and object. This paper is concerned only 
with the more common pyrite type, (Fig. 1) where 
incremental crystalline growth of fibres is located at the 
interface between the object and its pressure shadow. 
According to the way fibres grow, we distinguish two 
categories: displacement-controlled fibres, with a consis- 
tent geometry of progressive growth of fibres from the 
wall towards the resistant object; and face-controlled 
fibres, with fibre axes growing normal to the face of the 
resistant crystal, irrespective of the displacement direc- 
tions. 

During deformation, fibres in pressure shadows may 
be deformable or rigid, depending on pressure and 
temperature conditions. High temperatures usually 
imply deformable pressure shadows with strong re- 
crystallization. On the other hand, at low temperatures, 
pressure shadows are usually rigid and fibrous. Depend- 
ing on whether the fibres are deformable or rigid, so they 
react differently to progressive deformation. 

Some authors (e.g. Choukroune 1971, Ramsay & 
Huber 1983) have presented methods to determine 
incremental rotation and displacement of either the 
object with respect to the pressure shadow, or the 
pressure shadow with respect to the object. These 
methods do not account for the rotation of the whole 
association (object + pressure shadow) with respect to 
the matrix. In this paper we present a computer model 
for rotation and crystalline growth, controlled by the 
incremental deformation of the matrix (as in natural 
pressure shadows). 
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MODELS 

General principles 

We assume that pressure shadows result from the 
difference in deformation between a resistant object and 
a ductile matrix. For each increment of deformation, 
this mismatch induces gaps and boundary sliding. In the 
computer models we seek the rotation and translation of 
the object that minimize gaps and boundary sliding. Our 
method is basically that proposed by Etchecopar (1974, 
1977, 1984) for the minimization of gaps, overlaps and 
boundary sliding between the various cells of a polycrys- 
talline aggregate. 

We first define the boundaries of the object (Fig. 3), 
using regularly spaced points [Oi]. For each increment of 
strain, we compute the theoretical polyhedron resulting 
from finite deformation of the object boundaries, assum- 
ing equal ductility between matrix and object. The 
original points [Oi] thus occupy new positions [Mi]. We 
then compute the translation and the rotation of the 
rigid object which minimizes the squares of the distances 
Mi - O,. This minimization reduces the amount of gaps 
and boundary sliding between object and matrix. The 
gaps which still remain are assumed to represent an 
incremental pressure shadow. In other words, the crys- 
tallization rate is assumed to be high enough in compari- 
son with the strain rate to fill the remaining gap in a 
passive way. According to the behaviour of the material 
already crystallized, we distinguish two kinds of models, 
the rigid-fibre model and the deformable-fibre model. 

Rigid-fibre model (Fig. 4). In this model, the pressure 
shadows which have already crystallized are rigid. Thus, 
the model, contains three separate rigid elements, the 
object itself and the two associated pressure shadows. 
Due to the high crystallization rate assumed at the 
surface of the original object, displacements at the inter- 
face between object and pressure shadows are uncon- 
strained. Consequently, for the object as well as for the 
pressure shadows, minimization is performed only at the 
external boundaries between each of these rigid ele- 
ments and the matrix (Fig. 4). Following this geometrical 
principle, we compute, for each increment and for each 
rigid element, the translation and the rotation that 
minimize gaps and boundary sliding. We also assume 
that the gap appearing between the former pressure 
shadow and rigid object is filled by new material. On the 
other hand, we assume that the gap appearing between 
the pressure shadow and matrix is not rigid, but as 
deformable as the matrix. We base this assumption on 
our observations of natural samples, which show that 
only minor crystallization develops on matrix bound- 
aries of preexisting major pressure shadows (Fig. 2a)~ 

Deformable-fibre model (Fig. 5). In this model, the 
pressure shadow and the matrix have the same ductility. 
So, for each new increment, the former pressure shadow 
and matrix deform in the same way and no gap appears 
between them. New crystallization occurs only between 

the rigid object and the already crystallized pressure 
shadow incorporated into the matrix. 

In each of the two models described, it is possible to 
specify two modes of fibre growth, the face-controlled 
fibres and displacement-controlled fibres of Ramsay & 
Huber (1983). In the former, fibres grow orthogonally to 
the face of the crystal (Fig. 5); whereas, in the latter, 
fibres grow along the displacement path between the 
pressure shadow wall and the rigid object (Fig. 4). 

Results 

Initially identical configurations, containing square 
objects have been subjected to a deformation history of 
either pure shear or simple shear (Figs. 5-7). The models 
show the morphological characteristics of pressure 
shadows which are related to the imposed strain and 
rheological properties of the fibres. For simple shear 
(Figs. 5 and 6), note the asymmetry of pressure shadows, 
occurrence of asymmetric suture lines and formation of 
fibre domains of anomalous orientation, not in contact 
with the object. The simulations show that the direct 
measurement of pressure shadow lengths does not give 
the same amount of finite strain as that calculated from 
the superposed increments. The matrix strain ratio is 
approximately the square of the measured (X/Z) ratio of 
the pressure-shadow structures. 

COMPARISON OF MODELS WITH NATURAL 
EXAMPLES 

Method 

We compare the computer models with X Z  sections 
(cut perpendicular to cleavage and parallel to lineation) 
of naturally deformed specimens from geologically well- 
documented areas (Fig. 1). Samples contain pyrite crys- 
tals of various shapes and have undergone strains of 
various intensities. To model a natural example, one of 
the previously described crystallization mechanisms was 
chosen and then each of a number of parameters was 
varied until a best-fit result was obtained. The par- 
ameters varied were as follows: (1) initial orientation of 
the crystal with respect to the shear plane; (2) magnitude 
of incremental simple shear (7i), (3) magnitude of incre- 
mental shortening (Kil); and (4) magnitude of incre- 
mental elongation (K;:). 

The transformation of a point (X, Y) into a point (X',  
Y') by variation of the above parameters is as follows: 

X' .~-. (X 4- YTi)Ki2, 
Y'= YK, t. 

Example 1 (Fig. 8) 

Geological features. The first sample (Fig. 8a) from 
southern Tibet (Mesozoic flysh, south of Yamdroktso), 
was slightly deformed at metamorphic conditions close 
to lower-greenschist facies (Burg et al. 1980). The 
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Fig. 1. Pressure shadows of (a) example 2, (b) example 3 and (c) example 4. 
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Fig. 2(a). Minor recrystallization developed at the top-left pressure shadow/matrix interface; example 4 (Fig. lc) 
(b) Non-fibrous quartz crystals infilling a gap between a fibrous pressure shadow and its matrix; example 2 (Fig. la ant 

Cover). 
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Fig. 3. General principle of the model (see text). The white square 
shows the initial shape of the object in the matrix. The black one 
represents the object itself. The white parallelepiped shows the defor- 
mation of the matrix (assuming equal ductility in matrix and in object). 
The black parallelepiped shows the deformed object (less deformable 
than matrix). The best fit is obtained by minimization of the squares of 

the difference [Mi - O;]. 

Pyrenees (Lourdes), where other samples have been 
studied by Choukroune (1971) and Ramsay & Huber 
(1983). The rectangular pyrite (Fig. 9a), and the one 
with a more complex shape (Fig. 10a), both shown in 
Fig. 1, have very asymmetric pressure shadows, made of 
quartz fibres. (Note that Fig. l(a) is the 1987 cover 
photograph of this Journal.) 

The model. A best fit has been obtained using rigid 
displacement-controlled fibres (Figs. 8b and 9b). The 
incremental strain parameters are: 7i = 0.2, K;1 = 0.98, 
Ki2 = 1/0.98 (plane strain). The finite-strain parameters 
are: 7f = 5, K/a = 0.6, K/2 = 1.66. Best fits for both 
pressure shadows were obtained by using the same laws 
and parameters. This indicates that the deformation 
which affected them was the same (i.e. homogeneous). 

pressure shadows of this trapezoidal pyrite consist of 
quartz fibres. The pressure shadows and suture lines 
separating domains with differently orientated fibres are 
strongly asymmetric to cleavage. 

The model. A best fit to Fig. 8(a) is derived from the 
following model parameters: (i) fibres are deformable 
and face-controlled; (ii) deformation is by progressive 
simple shear, with no additional shortening or elonga- 
tion; (iii) simple shear increments are ~'i = 0.1 and total 
shear strain ~f = 1. This simulation is shown in Fig. 8(b): 
a comparison with (a) would seem to verify the non- 
coaxial (simple shear) nature of strain in this example. 

Examples 2 and 3 (Figs. 9 and 10) 

Geological setting. Both these examples of pyrite pres- 
sure shadows come from the same outcrop in the French 

Figure 11 shows how small changes in the parameters 
can drastically modify the morphology of the model 
pressure shadows. Although the comparison of these 
model and natural examples is satisfactory, some details 
of the real pressure shadow still remain to be explained. 
There are two small domains of poorly oriented non- 
fibrous quartz crystals (Fig. 2b and 9a). These aggregates 
probably do not belong to the pressure shadow itself, but 
are the infill of a gap formed during rotation (Fig. 6a) 
between the fibrous complex and the matrix which can- 
not accommodate the very high deformation required in 
this particular zone. In the two examples (as in every 
other sample from this outcrop), two kinked domains 
within the pressure shadow can be observed which we 
ascribe to a significant, but brief, variation of incre- 
mental strain. This phenomenon illustrates the sensitiv- 
ity of pressure shadows to changes in the nature of 
progressive deformation. 

/ /  - "  . . . . . .  ~ f 7  , / i  - - . 

Fig. 4. Rigid-fibre model with displacement-controlled fibres. True increments of deformation are 5 times smaller than 
illustrated. (1) Initial configuration, showing object in black. (2) Homogeneous deformation of matrix. (3) First 
minimization, with remaining gaps and overlaps. (4) First incremental growth of pressure shadows• (5) Second homogene- 
ous deformation of matrix. (6) Best fit between (i) external boundary of pressure shadows and (ii) matrix. (7) Best fit 
between (i) object boundary outside pressure shadows and (ii) matrix. (8) Second incremental growth of pressure shadows. 
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Fig. 7. Computer model for pure shear, where pressure shadow fibres are rigid and displacement-controlled. Notice that 
square object is oblique to bulk-strain axes 

Example 4 (Fig. 12) 

Geological setting. This f ramboidal  pyrite (Figs. lc  
and 12a) f rom Lagrave  (French Alps) ,  shows sigmoidal 
asymmetr ic  pressure shadows made  of  quar tz  fibres. The 
thin section (Fig. lc) is not  exactly in the X Z  plane and 
the pressure shadows appear  thicker than the computed  
ones. 

The model. A best fit is obta ined  using a rigid displace- 
ment-contro l led  fibre mode l  (Fig. 12b). The  parameters  
are: 7f --- 3, Yi = 0.1, with no shortening or  e longat ion 
(i.e. simple shear). 

The asymmet ry  of  pressure shadow and the pat tern  of  
fibres are indicative of  a non-coaxial  strain history. 

Example 5 

Geological setting. This sample (Fig. 13a) f rom Cen-  
turi (Nor thern  Corsica),  has undergone  intense Alpine  
deformat ion  under  condit ions of  high-pressure and low- 
tempera ture  me tamorph i sm (Malavieille 1983). 

The model. A best fit is obta ined  using deformable  
face-control led fibres (Fig. 13b), and parameters :  
y~ = 0.1, ?f = 4, with no shortening or e longat ion 
(simple shear).  

In the natural  sample,  the pressure shadows consist of  
weakly or iented large quartz  crystals, with only a few 
fibres close to the pyrite and perpendicular  to its margin.  
The tapered morpho logy  of  the pressure shadow,  com- 

l r n m  

a . - - - , ~ . ~ I E : : .  : ~ .  ~ , 1 r a m  

Fig. 8. Example 1. (a) comparison of a real pressure shadow (b) with 
computed pressure shadow. Model assumptions: deformable and 
face-controlled fibres; simple shear in increments of ~, = 0.1, up to 
total of ~! = 1; no shortening and no elongation. Black arrow indicates 

sense of rotation; S = cleavage surface. 

Fig. 9. Example 2. (a) Pressure shadow drawn from Fig. l(a). (b) 
Computed pressure shadow with assumptions: rigid and displacement- 
controlled fibres; strain parameters 7~ = 0.2; K~ = 0.98; Ki2 = 1/0.98 
(plane strain); finite-strain parameters 7,f= 5; K~ = 5; Krt  = 0.6: 

K¢7 -- 166. 
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Fig. 10. Example 3. (a) Pressure shadow drawn from Fig. l(b). (b) 
Computed pressure shadow using the same laws and parameters as in 

example 2. 

pared  with the previous  example ,  shows how defo rmable  
it is. 

SHEAR CRITERIA 

The  best  cri terion for de termining the sense of  shear- 
ing is the a symmet ry  of  pressure shadows in X Z  sections. 
This a symmet ry  is of ten  well ma rked  and pressure 
shadows may  be S-shaped (Fig. 14). Unfor tuna te ly  in 
slates it is dificult to  observe  good  X Z  sections,  while it is 
o f ten  easier to observe  the cleavage plane (XY).  O n  the 
cleavage plane the shape a round  an asymmetr ic  pressure 
shadow can be used to indicate the shear  sense. The  

b 

$ 
i 

Fig. 12. Example 4.(a) Pressure shadow drawn from Fig. l(c). (b) 
Computed pressure shadow, with assumptions: rigid and displace- 
ment-controlled fibres; strain parameters y~ = 0.1, yf = 3, no shorten- 
ing or elongation. (The thin section cut across this sample is not exactly 
perpendicular to the schistosity plane. That could explain that the 
actual pressure shadow morphology seems thicker than the computed 

o n e , )  

shear  direct ion is f rom the hol low towards  the h u m p  
(Fig. 15). 

C O N C L U S I O N S  

(1) F r o m  compute r  modell ing,  we suggest that  pres- 
sure shadows may  be used to est imate bulk strain and 
shear  sense in de fo rmed  rocks. 

(2) A s y m m e t r y  of  pressure shadows may  be used to 
infer a sense o f  shear  in non-coaxial  deformat ion .  

~ m 

c 

Fig. 11. Changes in simulated pressure-shadow shapes for example 2, using different laws and parameters. (a) As in Fig. 
9(b); rigid and displacement-controlled fibres. (b) Face-controlled fibres with the same parameters. (c) and (d) Change in 
simple shear magnitude: (c), yf = 4; (d), y! = 6. (e) Pure shear only. (f) and (g) Change in the pure shear magnitude: (f), 

zero (simple shear); (g), Kil = 0.96 and Kif = 2,77. 
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Fig. 14. Curved quartz pressure shadow around a framboidal pyrite 
from Lagrave (French Alps). The asymmetry indicates a dextral shear. 

Fig. 13. Example 5: comparison of real pressure shadow (a) with 
computed pressure shadow. (b) Deformable- and face-controlled 
fibres; strain parameters, Yi = 0.1, ?f = 4, no flattening, shortening or 

elongation. 

Y 
l X ~ Light ing 

Q 

:Hollow. :'2] :Crystal. []:Hump. 

Fig. 15. Morphology of cleavage surfaces around rigid crystals, indicating the shear sense (black arrow) from the hollow 
towards the hump. 

(3) The pressure shadow geometry is very sensitive to 
variations of deformation parameters. 

(4) Distinct pressure-shadow patterns were simulated 
for the different cases of deformable and rigid fibres, in 
simple shear. Rigid fibres exhibit sinuous ribbon-like 
shadows, whereas deformable fibres show a gradually 
tapering form. 

(5) The best-fit models to the natural examples were 
obtained from incremental strain parameters which did 
not change during the simulation. This suggests that the 
deformation increments varied only slightly, if at all, 
during the growth of these natural pressure shadows. 

(6) The models illustrate the influence of crystalliza- 
tion laws on the geometry and internal structure of 
pressure shadows. 

(7) On an interactive graphical display, a large number 

of pressure shadows can be rapidly computed. This 
makes the method useful for regional studies. 
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